
Mike Benkovich
Microsoft Corporation
 Mike.Benkovich@Microsoft.com
 http://blogs.msdn.com/benko
 Twitter: @mbenko
 http://www.BenkoTIPS.com

11/19/2010 1

 Visit my site – www.BenkoTIPS.com
 Resources from today’s talk

 Webcasts

 Downloads

 More!
 Subscribe to my blog (my boss will love that )

 http://blogs.msdn.com/benko
 Register for MSDN Events at www.msdnEvents.com

 Have an office full of developers who couldn’t make

it?
  Ask me about

 Extra Small instances ($.05/computer hr)
 Azure Hosted Reporting Services
 Better Diagnostics
 Data Sync
 Online Database Management

 More info: http://microsoftpdc.com
 SQL Labs: http://sqlazurelabs.com
 Azure: http://windows.azure.com

11/19/2010 3

http://microsoftpdc.com/
http://sqlazurelabs.com/
http://windows.azure.com/

 Overview
 Architecture
 Getting Started
 Migration
 Considerations

Provisioning, deploying and managing
servers at scale

Enabling faster, more efficient
development of applications with
existing knowledge and toolsets

Reducing IT hardware and infrastructure
costs

 Familiar SQL Server relational model
 Uses existing APIs & tools
 Friction free provisioning and reduced

management
 Built for the Cloud with availability and scale

Clear Feedback: “I want a SQL database in the Cloud”

Focus on combining the best features of SQL Server

running at scale with low friction

 Initial services – core RDBMS capabilities as a service

(SDS), Data Sync and Data Hub
 Soon – Reporting Services

Symmetric Programming Model Data Hub Aggregation

• Database utility; pay as
you grow

• Flexible load balancing

• Business-ready SLAs

• Enable multi-tenant
solutions

• World-wide presence

• Easy provisioning and
deployment

• Auto high-availability
and fault tolerance

• Self-maintaining
infrastructure; self-
healing

• No need for server or VM
administration

• Build cloud-based
database solutions on
consistent relational
model

• Leverage existing skills
through existing
ecosystem of developer
and management tools

• Explore new data
application patterns

 Overview
 Architecture
 Getting Started
 Migration
 Considerations

Application

Load Balancer

TDS (tcp:1433)

TDS (tcp: 1433)

TDS (tcp: 1433)

Applications use standard SQL
client libraries: ODBC,
OLEDB, ADO.Net, …

Load balancer forwards ‘sticky’
sessions to TDS protocol tier

Data Node Data Node Data Node Data Node Data Node Data Node

Gateway Gateway Gateway Gateway Gateway Gateway

Scalability and Availability: Fabric, Failover, Replication and Load balancing

Highly scaled out relational database as a service

SQL Azure

Database
(Windows Azure

Compute)

Browser

SOAP/REST

HTTP/S

Astoria/REST - EDM

HTTP/S

App

Code
(ASP.NET

)

App

Code
(ASP.NET)

Windows Azure Compute

T-SQL (TDS) T-SQL (TDS)

SQL

Azure

Database

SQL Server Reporting

Server

(on-premises)

MS

Datacenter

- AD Federation (LiveId /.Net

Svcs ACS)

Customer Value Props

Self-provisioning and capacity on

demand

Symmetry w/ on-premises database

platform

Automatic high-availability and fault-

tolerance

Automated DB maintenance

(infrastructure)

Simple, flexible pricing – “pay as you

grow”

Relational database service

SQL Server technology foundation

Highly symmetrical

Highly scaled

Database “as a Service” – beyond

hosting

SQL Azure access from within

MS Datacenter (Azure compute)
SQL Azure Access from outside

MS Datacenter (On-premises)

SQL Azure Access from within and outside MS

Datacenter (On-premises & Azure Compute)

Application/

Browser

SOAP/REST

HTTP/S
Astoria/REST - EDM

HTTP/S

App

Code
(ASP.NET

)

App

Code
(ASP.NET)

T-SQL (TDS)

SQL Azure Windows

Azure

Code Near

App code/ Tools

T
-S

Q
L

 (
T

D
S

)

SQL Azure

Windows

Azure

Code Far Hybrid

S
Q

L
 A

z
u

re

 D
a
ta

 S
y
n

c

Windows

Azure

SQL Azure

SQL

Server App code/ Tools

App

Code
(ASP.NET

)

App

Code
(ASP.NET)

T-SQL (TDS)

 Constants
 Constraints
 Cursors
 Index management and

rebuilding indexes
 Local temporary tables
 Stored procedures
 Statistics management
 Transactions
 Triggers

 Tables, joins, and table
variables

 Transact-SQL language
elements such as

 Create/drop databases

 Create/alter/drop tables

 Create/alter/drop users
and logins

 …

 User-defined functions
 Views

 Common Language
Runtime (CLR)

 Database file placement
 Database mirroring
 Distributed queries
 Distributed transactions
 Filegroup management
 Full Text Search
 Global temporary tables

 SQL Server
configuration options

 SQL Server Service
Broker

 System tables
 Trace Flags

 LOTS! Refer to MSDN

for specific details

 Overview
 Architecture
 Getting Started
 Migration
 Considerations

 Each account has zero or more servers
 Azure wide, provisioned in a common portal

 Billing instrument

 Each server has one or more databases
 Contains metadata about the databases and

usage

 Unit of authentication

 Unit of Geo-location

 Generated DNS based name

 Each database has standard SQL objects
 Unit of consistency

 Unit of multi-tenancy

 Contains Users, Tables, Views, Indices, etc.

 Most granular unit of billing

 Account

 Server

Database

 Azure configuration portal
 Browse to https://sql.azure.com

 Configure instances

 Create Databases

 Setup Firewall rules

 (beta) SQL Azure Labs Management, OData &
Sync Services
 http://SqlAzureLabs.com

https://sql.azure.com/
http://sqlazurelabs.com/

 Support common application patterns
 Consistent patterns for Azure and SQL

 ADO.NET Interop

 Multi-tenancy considerations

 Throttling and load balancing

 Limits on DB size, duration of transaction, etc

 Server based scale out

 Version 1: Address the needs of 95% or more standard application
functionality (web/enterprise)

 Can target SQL Azure either:

 Remotely from on-premise

 From Windows Azure

 Can promote existing applications or build
new applications

 SQL Azure offering currently favors:

 Cacheable data sets

 Multi tenanted data

 CPU/Memory intensive workloads

 SQL Server 2008 R2 Management Studio
 Object Explorer

 Tasks

 Query windows

 Visual Studio
 Developer tasks

 Project “Houston”
 Silverlight based Management Console

 SQL Azure connection strings follow normal SQL syntax

 Applications connect directly to a database
 “Initial Catalog = <db>” in connection string
 No support for context switching (no USE <db>)
 Some commands must be in their own batch

▪ Create/Alter/Drop Database & Create/Alter/Drop Login, & Create/Alter USER with
FOR/FROM LOGIN

 Encryption security

 Set Encrypt = True, only SSL connections are supported
 TrustServerCertificate = False, avoid Man-In-The-Middle-Attack!

 Format of username for authentication:

 ADO.Net:
Data Source=server.database.windows.net;
User ID=user@server;Password=password;...

 Setup your firewall rules first!

SQL Management Studio
Visual Studio
Project “Houston”

11/19/2010 24

 Overview
 Architecture
 Getting Started
 Migration
 Considerations

 Generate Script Wizard
 Produce a SQL script compatible with SQL Azure, Schema

and/or data
 SQL Server Migration Assistants (downloadable)
 MySQL, Oracle, Access, SQL Server...

 SQLAzureMW
 Useful for catching unsupported features in SQL Azure

 Moves data efficiently

 Unofficially supported

Data-tier Application Component (DAC)

New unit of deployment for T-SQL apps.

Supports Install, Uninstall

Contains developer intent as policies

Schema

LOGICAL
Tables, Views,

Constraints, SProcs,

UDFs,

PHYSICAL
Users, Logins,

Indexes

Future - DAC Deployment Profile
Deployment Requirements,

Management Policies, Failover Policies

U
n

it of D
eploym

en
t

 Scenario
 Migration of schema and/or data with fine grain control.

 Pros
 Native support for SQL Azure Schema options: “Engine Type = SQL

Azure”

▪ Ensures correct options and settings are applied for the TSQL script
generation.

▪ Requires explicit action on unsupported objects.

 Cons
 Verbose – INSERT Statements instead of raw data

 Data is scripted with a fixed 100 row batch size.

▪ Edit “GO” statements between small batches

 Round-trip Efficiency

▪ Use “SET NOCOUNT ON”

 Scenario

 Auto porting of schema, database code and data
from MySql and Access to SQL Azure

 SQL Server Migration Assistant for MySql and
Access

 Supports MySQL 4.1 and up

 Support Access v 97 and up

 SQL Server versions supported (all editions)

▪ SQL Azure, SQL Server 2005, SQL Server 2008 and 2008
R2

 Supports Scripting of Schema & Objects
 Generates BCP Scripts to migrate data
 Supports large data volumes
 Not “officially” supported

 sqlazuremw.codeplex.com

11/19/2010 29

http://sqlazuremw.codeplex.com/

 Scenarios
 Self contained package for moving schema easily through the

development lifecycle

 What is a DAC Pack?

 Single unit for authoring, deploying, and managing the
data-tier objects
▪ Development Lifecycle (VS 2010)

▪ Editing DACs

 Schema and DB Code Development, Code Analyses, Deployment Policy Settings,
Schema Comparison and more…

▪ Building DACs – the self contained database package

▪ Management Lifecycle (SSMS 2008 R2)

▪ Managing DACs

 Registering existing database as DACs

 Deploying and Upgrading databases using DACs,

 Overview
 Architecture
 Getting Started
 Migration
 Considerations

 Developing on a local SQL Express instance has some
advantages

 Easy to get started, you already know how to do it!

 Full fidelity with the designer and debugging tools

 Reduces latency when using local Azure development tools

 Reduces bandwidth and databases costs for development

 Some caveats

 Remember to alter your VS build settings to switch the
connection string when deploying

 Use tools (like SQLAzureMW) to keep you within the
supported SQL Azure features

 Always test in SQL Azure before deploying to production

 SELECT *
 INTO #Destination
 FROM Source
 WHERE [Color] LIKE 'Red‘

 To work around this you need to create your destination table then call INSERT

INTO. Here is an example:

 CREATE TABLE #Destination (Id int NOT NULL, [Name] nvarchar(max), [Color]
nvarchar(10))

 INSERT INTO #Destination(Id, [Name], [Color])
 SELECT Id, [Name], [Color]
 FROM Source
 WHERE [Color] LIKE 'Red';

 Connections can drop for variety of reasons
 Idleness (greater than 30 minutes)
 Throttling

▪ Long running transactions > 5 minutes
▪ Resource Management

 Database failover
▪ Hardware failure
▪ Load Balancing
▪ Upgrade

 What to do on connection failure?
 Wait, then retry if it is a transient failure
 Change your workload if throttled, i.e. break up your

transaction

// When pooling, use connection and return immediately
// Do not hold for a long time – pool ensure fast turnaround
// one second use
using (SqlConnection conn = new SqlConnection(…))
{
 conn.Open();
 using (SqlCommand cmd = conn.CreateCommand())
 {
 cmd.CommandText = …;
 …
 }
}
using (SqlConnection conn = new SqlConnection(…))
{
 conn.Open();
 …

Increases efficiency by removing re-login

Storage Requirements Low High

Tr
an

sa
ct

io
n

al
 R

eq
u

ir
em

en
ts

L

o
w

H

ig
h

• Single Database
• No Partitioning

• Partitioned Data
• Partitioning Based on

Application Requirements
(Storage)

• Partitioned Data
• Partitioning based on

Application Requirements
(IOPS)

• Partitioned Data
• Partitioning based on

Application Requirements
(IOPS, Storage or both)

…On To The New Stuff!

2010 2009

Q1 Q2 Q3 Q4 Q1 Q2

PDC 2008

Initial CTP
SQL Server

Data Services

MIX 2009

Announce
Relational

Database as a
Service

July 2009

1st Production
Deployment

MS Internal Property

PDC 2009

Service Launch

Windows
Azure Platform

Feb 2010

Commercial
Availability

Windows Azure
Platform

Post Launch
New Countries

New Service Updates

New Data Centers

PowerPivot for SharePoint

PowerPivot

https://www.sqlazurelabs.com

Benefits

• Scale-out read or
read/write

• Geo replication of data

• Edge network data
distribution

• Content delivery
networks

Sync
Group

SQL
Azure

SQL
Azure

SQL
Azure

 Multiple DB collations
 Operational Reporting
 Business Intelligence/Analytics
 Logical Back-up/Restore (incl. geo)
 Full text support
 Radical scale-up and scale-out
 Service Tiers

…and much, much more…

 Well established, commercially available service
 Symmetrical extension of the SQL Server data

platform
…unique capabilities integrated into an
enterprise-class ecosystem

 Great new features including:

 Microsoft Office 2010 integration

 New DB sizes and billing tiers

 Spatial data support

 Web-based logical data administration

 Broad reach through industry-standard web protocols

 Rich relational data synchronization capabilities

Mike Benkovich
Microsoft Corporation
 Mike.Benkovich@Microsoft.com
 http://blogs.msdn.com/benko
 Twitter: @mbenko
 http://www.BenkoTIPS.com

11/19/2010 46

