
Mike Benkovich 
Microsoft Corporation 
 Mike.Benkovich@Microsoft.com 
 http://blogs.msdn.com/benko 
 Twitter: @mbenko 
 http://www.BenkoTIPS.com 

11/19/2010 1 



 Visit my site – www.BenkoTIPS.com   
 Resources from today’s talk 

 Webcasts 

 Downloads 

 More! 
 Subscribe to my blog (my boss will love that ) 

 http://blogs.msdn.com/benko  
 Register for MSDN Events at www.msdnEvents.com  

 
 Have an office full of developers who couldn’t make 

it? 
  Ask me about  



 Extra Small instances ($.05/computer hr) 
 Azure Hosted Reporting Services  
 Better Diagnostics 
 Data Sync 
 Online Database Management 

 
 More info:  http://microsoftpdc.com 
 SQL Labs:  http://sqlazurelabs.com 
 Azure:  http://windows.azure.com  

11/19/2010 3 

http://microsoftpdc.com/
http://sqlazurelabs.com/
http://windows.azure.com/


 Overview 
 Architecture  
 Getting Started 
 Migration 
 Considerations 

 



Provisioning, deploying and managing 
servers at scale 

Enabling faster, more efficient 
development of applications with 
existing knowledge and toolsets 

Reducing IT hardware and infrastructure 
costs 





 Familiar SQL Server relational model 
 Uses existing APIs & tools 
 Friction free provisioning and reduced 

management 
 Built for the Cloud with availability and scale 

Clear Feedback: “I want a SQL database in the Cloud” 

Focus on combining the best features of SQL Server 

running at scale with low friction 



 
 Initial services – core RDBMS capabilities as a service 

(SDS), Data Sync and Data Hub 
 Soon – Reporting Services  

Symmetric Programming Model Data Hub Aggregation 



 

• Database utility; pay as 
you grow 

• Flexible load balancing 

• Business-ready SLAs 

• Enable multi-tenant 
solutions 

• World-wide presence 

• Easy provisioning and 
deployment 

• Auto high-availability 
and fault tolerance 

• Self-maintaining 
infrastructure; self-
healing 

• No need for server or VM 
administration 

• Build cloud-based 
database solutions on 
consistent relational 
model 

• Leverage existing skills 
through existing 
ecosystem of developer 
and management tools 

• Explore new data 
application patterns 



 Overview 
 Architecture  
 Getting Started 
 Migration 
 Considerations 

 



Application 

Load Balancer 

TDS (tcp:1433) 

TDS (tcp: 1433) 

TDS (tcp: 1433) 

Applications use standard SQL 
client libraries: ODBC,  
OLEDB, ADO.Net, … 

Load balancer forwards ‘sticky’ 
sessions to TDS protocol tier 

Data Node Data Node Data Node Data Node Data Node Data Node 

Gateway Gateway Gateway Gateway Gateway Gateway 

Scalability and Availability: Fabric, Failover, Replication and Load balancing 



Highly scaled out relational database as a service 

SQL Azure 

Database  
(Windows Azure 

Compute) 

Browser 

SOAP/REST 

HTTP/S 

Astoria/REST - EDM 

HTTP/S 

App 

Code 
(ASP.NET

) 

App 

Code 
(ASP.NET) 

Windows Azure Compute 

T-SQL (TDS) T-SQL (TDS) 

SQL 

Azure  

Database  

SQL Server Reporting 

Server 

(on-premises) 

MS 

Datacenter 

- AD Federation (LiveId /.Net 

Svcs ACS) 

Customer Value Props 

Self-provisioning and capacity on 

demand 

Symmetry w/ on-premises database 

platform 

Automatic high-availability and fault-

tolerance 

Automated DB maintenance 

(infrastructure) 

Simple, flexible pricing – “pay as you 

grow” 

Relational database service 

SQL Server technology foundation 

Highly symmetrical 

Highly scaled 

Database “as a Service” – beyond 

hosting 



SQL Azure access from within  

MS Datacenter (Azure compute) 
SQL Azure Access from outside  

MS Datacenter  (On-premises) 

SQL Azure Access from within and outside MS 

Datacenter (On-premises & Azure Compute) 

Application/ 

Browser 

SOAP/REST 

HTTP/S 
Astoria/REST - EDM 

HTTP/S 

App 

Code 
(ASP.NET

) 

App 

Code 
(ASP.NET) 

T-SQL (TDS) 

SQL Azure  Windows 

Azure 

Code Near 

App code/ Tools 

T
-S

Q
L

 (
T

D
S

) 

SQL Azure  

Windows 

Azure 

Code Far Hybrid 

S
Q

L
 A

z
u

re
 

 D
a
ta

 S
y
n

c
 

Windows 

Azure 

SQL Azure  

SQL 

Server App code/ Tools 

App 

Code 
(ASP.NET

) 

App 

Code 
(ASP.NET) 

T-SQL     (TDS) 



 Constants 
 Constraints 
 Cursors 
 Index management and 

rebuilding indexes 
 Local temporary tables 
 Stored procedures 
 Statistics management 
 Transactions 
 Triggers 

 Tables, joins, and table 
variables 

 Transact-SQL language 
elements such as  

 Create/drop databases 

 Create/alter/drop tables 

 Create/alter/drop users 
and logins 

 … 

 User-defined functions 
 Views 

 



 Common Language 
Runtime (CLR) 

 Database file placement 
 Database mirroring 
 Distributed queries 
 Distributed transactions 
 Filegroup management 
 Full Text Search 
 Global temporary tables 

 SQL Server 
configuration options 

 SQL Server Service 
Broker 

 System tables 
 Trace Flags 

 
 LOTS! Refer to MSDN 

for specific details 



 Overview 
 Architecture  
 Getting Started 
 Migration 
 Considerations 

 



 Each account has zero or more servers 
 Azure wide, provisioned in a common portal 

 Billing instrument 
 

 Each server has one or more databases 
 Contains metadata about the databases and 

usage 

 Unit of authentication 

 Unit of Geo-location 

 Generated DNS based name 
 

 Each database has standard SQL objects 
 Unit of consistency 

 Unit of multi-tenancy 

 Contains Users, Tables, Views, Indices, etc. 

 Most granular unit of billing 

 

     Account 

     Server 

Database 



 Azure configuration portal 
 Browse to https://sql.azure.com  

 Configure instances 

 Create Databases 

 Setup Firewall rules 
 

 (beta) SQL Azure Labs Management, OData & 
Sync Services 
 http://SqlAzureLabs.com 

 

https://sql.azure.com/
http://sqlazurelabs.com/




 Support common application patterns 
 Consistent patterns for Azure and SQL 

 ADO.NET Interop 

 Multi-tenancy considerations 

 Throttling and load balancing 

 Limits on DB size, duration of transaction, etc 

 Server based scale out 

 Version 1: Address the needs of 95% or more standard application 
functionality (web/enterprise) 



 Can target SQL Azure either: 

 Remotely from on-premise 

 From Windows Azure 

 Can promote existing applications or build 
new applications 

 SQL Azure offering currently favors: 

 Cacheable data sets 

 Multi tenanted data 

 CPU/Memory intensive workloads 



 SQL Server 2008 R2 Management Studio 
 Object Explorer 

 Tasks 

 Query windows 

 
 Visual Studio 
 Developer tasks 

 
 Project “Houston” 
 Silverlight based Management Console 



 SQL Azure connection strings follow normal SQL syntax 
 

 Applications connect directly to a database 
 “Initial Catalog = <db>” in connection string 
 No support for context switching (no USE <db>) 
 Some commands must be in their own batch 

▪ Create/Alter/Drop Database & Create/Alter/Drop Login, & Create/Alter USER with 
FOR/FROM LOGIN  

 
 Encryption security 

 Set Encrypt = True, only SSL connections are supported 
 TrustServerCertificate = False, avoid Man-In-The-Middle-Attack! 

 
 Format of username for authentication: 

 ADO.Net: 
Data Source=server.database.windows.net; 
User ID=user@server;Password=password;... 
 

 Setup your firewall rules first! 
 



SQL Management Studio 
Visual Studio 
Project “Houston” 

11/19/2010 24 



 Overview 
 Architecture  
 Getting Started 
 Migration 
 Considerations 

 



 Generate Script Wizard 
 Produce a SQL script compatible with SQL Azure, Schema 

and/or data 
 SQL Server Migration Assistants (downloadable) 
 MySQL, Oracle, Access, SQL Server... 

 SQLAzureMW 
 Useful for catching unsupported features in SQL Azure 

 Moves data efficiently 

 Unofficially supported 

Data-tier Application Component (DAC) 

New unit of deployment for T-SQL apps. 

Supports Install, Uninstall 

Contains developer intent as policies 

Schema 

LOGICAL 
Tables, Views, 

Constraints, SProcs, 

UDFs,  

PHYSICAL 
Users, Logins, 

Indexes 

Future - DAC Deployment Profile 
Deployment Requirements, 

Management Policies, Failover Policies 
 

U
n

it of D
eploym

en
t 



 Scenario 
 Migration of schema and/or data with fine grain control. 

 Pros 
 Native support for SQL Azure Schema options: “Engine Type = SQL 

Azure” 

▪ Ensures correct options and settings are applied for the TSQL script 
generation. 

▪ Requires explicit action on unsupported objects.  

 Cons 
 Verbose – INSERT Statements instead of raw data 

 Data is scripted with a fixed 100 row batch size. 

▪ Edit “GO” statements between small batches 

 Round-trip Efficiency 

▪ Use “SET NOCOUNT ON” 

 



 Scenario 

 Auto porting of schema, database code and data 
from MySql and Access to SQL Azure 

 SQL Server Migration Assistant for MySql and 
Access 

 Supports MySQL 4.1 and up 

 Support Access v 97 and up 

 SQL Server versions supported (all editions) 

▪ SQL Azure, SQL Server 2005, SQL Server 2008 and 2008 
R2 



 Supports Scripting of Schema & Objects 
 Generates BCP Scripts to migrate data 
 Supports large data volumes 
 Not “officially” supported 

 
 sqlazuremw.codeplex.com  

11/19/2010 29 

http://sqlazuremw.codeplex.com/


 Scenarios 
 Self contained package for moving schema easily through the 

development lifecycle 

 What is a DAC Pack? 

 Single unit for authoring, deploying, and managing the 
data-tier objects 
▪ Development Lifecycle (VS 2010) 

▪ Editing DACs 

 Schema and DB Code Development,  Code Analyses, Deployment Policy Settings, 
Schema Comparison and more… 

▪ Building DACs – the self contained database package  

▪ Management Lifecycle  (SSMS 2008 R2) 

▪ Managing DACs  

 Registering existing database as DACs 

 Deploying and Upgrading databases using DACs,  



 Overview 
 Architecture  
 Getting Started 
 Migration 
 Considerations 

 



 Developing on a local SQL Express instance has some 
advantages 

 Easy to get started, you already know how to do it! 

 Full fidelity with the designer and debugging tools 

 Reduces latency when using local Azure development tools 

 Reduces bandwidth and databases costs for development 

 Some caveats 

 Remember to alter your VS build settings to switch the 
connection string when deploying 

 Use tools (like SQLAzureMW) to keep you within the 
supported SQL Azure features 

 Always test in SQL Azure before deploying to production 



 SELECT * 
 INTO #Destination 
 FROM Source 
 WHERE [Color] LIKE 'Red‘ 

 
 To work around this you need to create your destination table then call INSERT 

INTO. Here is an example: 
 

 CREATE TABLE #Destination (Id int NOT NULL, [Name] nvarchar(max), [Color] 
nvarchar(10))  
 

 INSERT INTO #Destination(Id, [Name], [Color])  
 SELECT Id, [Name], [Color]  
 FROM Source  
 WHERE [Color] LIKE 'Red';  



 Connections can drop for variety of reasons 
 Idleness (greater than 30 minutes) 
 Throttling 

▪ Long running transactions > 5 minutes 
▪ Resource Management 

 Database failover 
▪ Hardware failure 
▪ Load Balancing 
▪ Upgrade 

 
 What to do on connection failure? 
 Wait, then retry if it is a transient failure 
 Change your workload if throttled, i.e. break up your 

transaction 
 



// When pooling, use connection and return immediately 
// Do not hold for a long time – pool ensure fast turnaround 
// one second use 
using (SqlConnection conn = new SqlConnection(…)) 
{ 
    conn.Open();     
    using (SqlCommand cmd = conn.CreateCommand()) 
    { 
        cmd.CommandText = …; 
        … 
    } 
} 
using (SqlConnection conn = new SqlConnection(…)) 
{ 
    conn.Open(); 
    … 

 

Increases efficiency by removing re-login 



Storage Requirements Low High 

Tr
an

sa
ct

io
n

al
 R

eq
u

ir
em

en
ts

 
L

o
w

 
H

ig
h

 

• Single Database 
• No Partitioning 

• Partitioned Data 
• Partitioning Based on 

Application Requirements 
(Storage) 

• Partitioned Data 
• Partitioning based on 

Application Requirements 
(IOPS) 

• Partitioned Data 
• Partitioning based on 

Application Requirements 
(IOPS, Storage or both) 



…On To The New Stuff! 

2010 2009 

Q1 Q2 Q3 Q4 Q1 Q2 

PDC 2008 

Initial CTP 
SQL Server  

Data Services 

MIX 2009 

Announce 
Relational 

Database as a 
Service 

July 2009 

1st Production 
Deployment  

MS Internal Property 

PDC 2009 

Service Launch 

Windows 
Azure Platform 

Feb 2010 

Commercial 
Availability  

Windows Azure 
Platform 

Post Launch 
New Countries 

New Service Updates 

New Data Centers 



PowerPivot for SharePoint 

PowerPivot 



https://www.sqlazurelabs.com 





Benefits 

• Scale-out read or 
read/write 

• Geo replication of data 

• Edge network data 
distribution 

• Content delivery 
networks 

Sync 
Group 

SQL 
Azure 

SQL 
Azure 

SQL 
Azure 



 Multiple DB collations 
 Operational Reporting  
 Business Intelligence/Analytics 
 Logical Back-up/Restore (incl. geo) 
 Full text support 
 Radical scale-up and scale-out 
 Service Tiers 

…and much, much more… 
 

 



 Well established, commercially available service 
 Symmetrical extension of the SQL Server data 

platform 
…unique capabilities integrated into an 
enterprise-class ecosystem 

 Great new features including: 

 Microsoft Office 2010 integration 

 New DB sizes and billing tiers 

 Spatial data support 

 Web-based logical data administration 

 Broad reach through industry-standard web protocols 

 Rich relational data synchronization capabilities 



Mike Benkovich 
Microsoft Corporation 
 Mike.Benkovich@Microsoft.com 
 http://blogs.msdn.com/benko 
 Twitter: @mbenko 
 http://www.BenkoTIPS.com 

11/19/2010 46 


