
MSDN Winter 2009

Mike Benkovich
http://www.BenkoTIPS.com

Why are we here?

Free Coffee

Day off from work

Like hanging out with Microsoft

Give-aways

Free Training

Some housekeeping…

Cell phones – Pagers – Musical Watches
set to stun

Logistics
breaks, restrooms, refreshments

Evaluations are important!
Future content – What do you want to see???

9 = A … “Great, you hit your goals!”

8 = B … “Needs some work”

7 = C … “C’mon you can do better”

<7 … Give me some feedback…

Give aways!

Tips and Tricks with the Visual Studio
Debugger

Mike Benkovich
Microsoft
Mike.benkovich@microsoft.com
www.BenkoTIPS.com

mailto:Mike.benkovich@microsoft.com
http://www.benkotips.com/

Agenda

Advanced Breakpoints

The Watch Window (AKA the Expression
Evaluator)

Set Next Statement

The Threads Window

.NET Reference Source Code

Advanced Breakpoints

In the debugging dark ages, you had to run
your program until it crashed and look at a hex
dump listing because there were no
breakpoints

The debugger renaissance age allowed you to
set a breakpoint on an address and view a
disassembly

In the debugging modern age, setting a
breakpoint on a source line was something
magical

The post-modern age of debugging is all about
Advanced Breakpoints

Before Setting Advanced Breakpoints

Always start debugging first

If you are not debugging, only Intellisense is
used to determine the breakpoint

Once debugging, you have both Intellisense
and symbol tables

Breakpoint Window Codes

Advanced Location Breakpoints

Select the location up the stack you want to
stop on

Press F9 to set a breakpoint

If you right click on the stack item, you can also
choose Run to Cursor

Sub Expression Breakpoints

You can easily set breakpoints on sub
expressions on the same line

Clicking the margin only sets a breakpoint on
the first sub expression on the line

Select the sub expression you want to stop on
and press F9

Only that sub expression will be highlighted as a
breakpoint when debugging

The Breakpoint window shows the character
start of the sub expression

Quickly Breaking on Any Function

Opening files and scrolling all over the place
just to press F9 on a line is a big waste of time

The debugger is smart enough to hunt down
your functions for you

The magic is all in the Breakpoints dialog

CTRL+B on the default keyboard

Quickly Breaking on Any Function
(cont.)

In the Breakpoint dialog, Function edit control
Type the class name and method/property to break on

The name is dependent on the language

Use “Module.Function” for VB and C#

Use “Module::Function” for C++/CLI

Check Use Intellisense to verify the function name

If debugging will use Intellisense and the symbols to find the
method/property

Set the Language combo box to the appropriate
language

Leave the column and line set to 1

This sets the breakpoint on the first instruction in
the method/property

Choose Breakpoints Dialog

The New Breakpoints dialog has even more
smarts built into it if a project is loaded

Instead of typing in the complete class and
method, try just the method/property name

If that method exists in any classes in the
solution, the Choose Breakpoints dialog will
pop up

Choose Breakpoints Dialog (cont.)

From the Choose Breakpoints dialog

All methods of that name from all classes are shown

Clicking the All button will set breakpoints on all of them

Clicking the check box next to an item will set or clear it

If you're debugging a Visual Basic project

You can specify the parameters in the Breakpoints dialog
to skip the Choose Breakpoints dialog

Unfortunately, unlike native C++, typing just the
class name will not pop up the Choose Breakpoints
dialog with all the methods and parameters

Location Breakpoint Modifiers

These are the real power in the debugger

The more you practice these, the faster you'll debug

The idea is to make the debugger stop only
when you want it to stop

In other words, the debugger only stops when
you exactly match your hypothesis

Supports, hit counts, conditions, and filters

Breakpoint Hit Count

Skips a breakpoint a specific number of times
when running full speed

Conditions for skipping

Equal to

Stop only when hit count equals initial value

Multiple of

Stop every x times (think modulo)

Greater than or equal

Continues to stop after equaling initial count

Breakpoint Hit Count Steps

Set a location breakpoint

Right click on the margin red breakpoint dot

From the context menu chose “Hit Count...”

In the Breakpoint Hit Count dialog, combo box,
select the condition

In the edit control that appears, set the number to
skip, etc.

Click OK

Breakpoint Hit Count Steps (cont.)

The Breakpoints window will show the total
execution count

Use it to see how far you are in loops, etc.

You can also reset the skip count back to zero
at any time by accessing the Breakpoint Hit
Count dialog for the breakpoint

Breakpoint Condition

Probably the modifier you will use the most

Stops when a conditional expression evaluates
to true

Also, can stop when a variable changes

The source language determines the
expression operators

If Visual Basic, “<>” is not equal, etc

If C#, C++/CLI, “!=” is not equal, etc

Breakpoint Condition Steps

Set a location breakpoint

Right click on the margin red breakpoint dot

From the context menu choose “Condition...”

In the Breakpoints dialog, ensure the Condition
button is checked

Select the "is true" radio button to stop when the
condition is true

In the edit control type the complete expression to
evaluate

Click OK

Breakpoint Condition Steps (cont.)

If you enter just a variable in the Condition edit
control and select the "has changed" radio button

You can break when a variable value changes on that
location

Additionally, you can specify hit counts to stop on
the specific time the condition is true

The Breakpoints window shows the condition for
the breakpoint

Assertions On the Fly

With the ability to call methods, now you can
have debug only methods that return true
when something‟s wrong

Using that method as a conditional means
you‟ll only stop when that condition is met

Essentially, this is like poking in an assertion
check before the statement

But there‟s no code changing

Assertions On the Fly (cont.)

Add a method that returns a Boolean

Returns true if there is a problem

Surround the method with #ifdef DEBUG…#endif

Can‟t use [Conditional(“DEBUG”)] as that only works for
void return types

Use the method in any BP condition you want to
stop on if the condition is met

#if DEBUG
public bool CheckName ()
{

if (null == m_Name)
{

return (true) ;
}
return (false) ;

}
#endif

Filter Breakpoint Modifier

Easily set per machine, process, and/or thread
breakpoints

Setting a Filter Breakpoint Modifier

Set a location breakpoint

Right click on the breakpoint glyph and select
“Filter…”

In the Breakpoint Filter dialog, fill in your condition

Undocumented syntax

“==“ is supported

The machine/process/thread keywords are case
insensitive

Tracepoints

Basically breakpoints with a different name

Intended to continue execution

Custom actions

Print a message (jam in a TRACE statement)

Put variables in “{}” to evaluate

“\{“ to print a curly brace, “\\” to print a backslash

Special codes in tracepoint dialog

Execute a VSA macro

The Watch Window (AKA Expression
Evaluator)

The Watch window is one of the finest pieces
of software engineering you'll see

It offers almost infinite flexibility

The most important thing is that in the Watch
window and its cousins (Autos, Locals, Quick
Watch, etc) you can click on the value of a
variable and change it

The awesome new data tips are the Watch
window in tool tips

All data is fully editable

Pressing the CTRL key makes the Data Tip window
see through

Calling Methods in the Watch Window

It's a great trick for two reasons

It allows you to see data structures that the Watch
window does not display well

You can also have assertions completely on the fly

Every time you view a property, you're calling
the getter method in the Watch window

Calling a method is as simple as adding the
parenthesis and any parameters needed

Calling Methods in the Watch Window
(cont.)

Where does the method/property execute?

In the debuggee

There are a few rules

Don't do anything more than reading memory

The method must execute in less than 20 seconds

Interestingly, this same restriction does not apply to
methods called by breakpoints

Does not stop on breakpoints when called
from the Watch window

If you want to stop, use the Immediate window

Great Testing Trick

Drag the expression in a condition down to the
Watch window

This allows you to evaluate and see exactly
what variables will trigger the condition you
need

An excellent trick for driving that code
coverage as high as possible

I've changed my coding style to avoid function
calls in expressions to make this easier to
evaluate

What If the Expression Uses Objects?

For example, how do you change ae?

Watch Window – In the Value column enter

The Immediate window

Type in an expression to allocate an object

Open the Locals/Watch/This window

Make sure variable is in the window

In the Value cell, enter the variable prefixed with a „$‟ sign

From the above: $x

if (false == String.IsNullOrEmpty (ae.Name)) ...

? SomeClass x = new SomeClass () ;

new SomeClass ()

Make Object ID

Make Object ID is the very interesting option

Tells the debugger to watch a particular object in
memory no matter where it goes

Can ID the object with a number

Use 1# in the Watch window for object one, etc.

Allows you to watch objects even out of scope

If it says “Can‟t evaluate” that means the object has
been garbage collected

Can even use the object id in conditional
breakpoints

Allows specific instance breakpoints

What Generation is This Object In?

Nothing‟s stopping you from calling
GC.GetGeneration in the Watch window

Even cooler!
Use Make Object ID to watch an object that‟s not in
scope

Pass the Object ID to GC.GetGeneration
The expression evaluator handles it just fine

Set Next Statement Command

A cool hidden trick in the debugger

It allows you to change the instruction pointer
to a different location

A great debugging trick for two reasons

You can drive your code coverage higher

You can re-execute code to double check conditions

Be careful, as Set Next Statement can easily
crash your program if you put the IP in the
wrong place

Always enable Show Threads in Source

Turns on margin icon that shows you what other
threads are executing in the application

Threads Window

Threads Window (cont.)

Can change the name of a thread in the Name
column

Right click on thread and select Rename

Makes filter breakpoints much easier

Hover mouse over Location column to see
current call stack

Freeze threads to avoid bouncing around when
single stepping

The .NET Reference Source Code

Seeing the .NET source is wonderful when
debugging

Setting up your IDE
In Options dialog, Debugging General

Check “Enable .NET Framework source stepping”

The .NET Reference Source Code (cont.)

In Options dialog,
In “Symbol file (.pdb) locations” add (at a minimum)

http://referencesource.microsoft.com/symbols

http://msdl.microsoft.com/download/symbols

Any of your company symbol servers

In “Cache symbols from symbol servers to this directory” enter
c:\symbols

The .NET Reference Source Code (cont.)

Now every time you debug, you‟ll download
the .NET Reference Source

Can be very slow the first time you run on a machine

May want to consider only loading symbols
manually

So you pay the download tax only when you need
to

Options dialog, Debugging, Symbols

Uncheck “Search the above locations only when symbols
are loaded manually”

When you want symbols and source

Right click on method in Call Stack window and select Load
Symbols

Problems with .NET Reference Source
Downloading

The debugger can only download a single file
at a time

Would be nice to have the following

A batch download of all supported files into your
cache

A way to work with proxy servers

A way to even have .NET source debugging with VS
2005 or CodeGear tools

NetMassDownloader to the rescue

http://www.codeplex.com/NetMassDownloader

By Kerem Kusmezer and John Robbins

To download all the current sources from Microsoft:

netmassdownloader
-d "C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5"

-d "C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0”
-d C:\windows\Microsoft.NET\Framework\v2.0.50727

Windows Mobile 6 Development

[Name]
[Title]
[email]

Agenda

Overview of Windows Mobile 6 Devices

Look at Windows Mobile 6 development
components:

Visual Studio

Compact Framework

Windows Mobile 6 SDKs

SQL Compact

Windows Mobile 6 Technologies

GPS

Data Architecture

Resources on the Web

Market Overview

Mobile software is one of the fastest-growing
development arenas.

Windows Mobile is among the top players

Over 18 million devices shipped in 2008!

Windows Mobile Development

Managed-code
stack (.NET
Compact
Framework 3.5)
sits on top of
native
architecture

Cellular, GPS,
and other
device services
wrapped with
.NET

OEM Applications

OEM Extensions Application

Compact Framework Class Libraries

Execution Engine

PAL

Host operating system

Native Code

Managed Code

.NET Compact Framework and SQL Compact

Language support

Create solutions in C# or VB.NET

Broad feature inclusion:

LINQ (to dataset and objects)

Windows Communication Foundation

SQL Server Compact 3.5

Royalty-free redist

Windows Mobile 6 SDK

• Includes .NET Compact Framework

– 2.0 and 3.5 class libraries.

• New form templates for Device Emulator

• Tools

– Simulation of cellular networks

– GPS tracking

– Input stress

– Device security management

Device Support – Three Versions

Pocket PCs

Windows Mobile 6 Professional

Windows Mobile 6 Classic

Smartphones

Windows Mobile 6 Standard

Windows Mobile 6 Devices

What You Need

Visual Studio 2008 Professional SP1

Alternative: Visual Studio 2005 SP1.

Windows Vista

Windows XP SP2, Windows Server 2003, or Windows
Server 2008 will also work.

Windows Mobile Device Center for Vista

ActiveSync 4.5 for Windows XP or Windows Server
2003

What You Need (cont.)

Two separate Windows Mobile 6 SDKs
Windows Mobile 6 Standard SDK for smartphones

Windows Mobile 6 Professional SDK for all Pocket
PCs

Windows Mobile 6.1.4 Device Emulator
Images

Install and Configuration

Install Visual Studio 2008 SP1 First.

Be sure to include support for Mobile Development

And SQL Compact

Then Windows Mobile 6 Refresh.

Finally, the new 6.1.4 Emulators

You‟ll need to install Virtual PC 2007 for
networking support

Even within a virtual image

Don‟t forget to set the connection type as DMA
instead of Bluetooth

Mobile Device Emulator

Target various form factors at various screen
resolutions

Change display orientation

Support hot-key combinations

Map serial ports

Simulate card storage and network connectivity

Implement 3D graphics with Direct3D Mobile.

Windows Mobile 6 SDK Emulator Images

Cellular Emulator and Hopper

Cellular Emulator allows you to
Target both voice and data connectivity
scenarios.

Explore different wireless network conditions
in GSM/GPRS and UMTS networks.

Hopper Test Tool

Stresses all applications available through
menu with random keystrokes, or only your
application.

GPS Support

Fake GPS: an NMEA .txt file simulates the
movement of the device in space.

Configure it to test location-targeted functions.

Dixies.txt

Fakegpsdata.txt

Note that for Windows Mobile Standard, you
can configure GPS using the SDK‟s
GPSSettings.exe program

Professional and Classic have this utility built in.

Security Tools

From your workstation, access a Windows
Mobile device remotely or locally to

Change Remote API (RAPI) security policy

Provision and save security configurations

Add development certificates

Sign a file or check its signature

Revoke an application or certificate

Data Storage and Retrieval

SQL Compact 3.5 installs with 5 MB memory

LINQ supports objects and datasets but not
LINQ to SQL

ADO.NET offers SQL Synchronization

SQLCeResultsets improve performance over
datasets

DataSet vs. SqlCeResultSet

TableAdapter.Update()

TableAdapter.Fill()

DataSet
DataSet BindingSource

Display

Update

DataGrid

SqlCeResultSet

Display

Update

SqlCeResultSet.Read()

SqlCeResultSet.Update()

Project Tips

Remember to install Mobile Center (or
ActiveSync) and Virtual PC

You don‟t need them to deploy projects

But you do need them for internet connectivity

When you create a new Smart Device project,
ignore the dropdown above the templates
frame that lets you choose a target
framework version.

You can always choose another mobile device
template by changing the FormFactor
property.

Vista Issues

Do NOT install ActiveSync.

You need Windows Mobile Device Center for device
synchronization.

Install Visual Studio 2008 SP1.

If the SDK samples do not build, copy them to
a different location.

Internet Explorer 6 Mobile

Jscript v5.7, ported from Internet Explorer 8 for
the desktop.

Much better support for AJAX applications.

Improved fidelity, text wrap, touch-and-gesture
pan support

WML, Adobe Flash Lite 3.1 for Flash applications.

Easy switch between Mobile and Desktop
modes

Both can be targeted with User Agent strings.

Request Header

Mobile Mode says...

User-Agenet: Mozilla/4.0 (compatible;
MSIE 6.0; Windows CE; IEMobile 8.12;
MSIEMobile 6.0)

Used to say...

User-Agent: Mozilla/4.0 (compatible; MSIE
6.0; Windows CE; IEMobile 7.11)

Desktop Mode says...

User-Agent: Mozilla/4.0 (compatible; MSIE
6.0; Windows NT 5.1)

(Same as Internet Explorer 6 for PC.)

Add-ons and Plug-ins

Windows Media Player

Adobe FlashLite

Silverlight Coming

Coding Best Practices

Use separate HTML, CSS, and JScript files.

Load JScript at the end of the page that‟s not
needed for layout.

Do not ask the browser to resize via .

Streaming video should not be larger than the
screen resolution.

Choose the right bit rate

EDGE and 3G networks.

Limitations and Workarounds

Codebase property of object tag is not
supported. You must download and install
plug-ins.

PNGs have no native tag support for
alpha. You can work around with a filter:

<img src="blank.gif" style="width: 163px; height:
77px; filter: progid:DXImageTransform.Microsoft.
AlphaImageLoader (src=‘myImage.png',
sizingMethod='scale')" />

Web Resources

MSDN

http://msdn.microsoft.com/en-us/library/bb158532.aspx

Mobile 6 SDK Refresh Download

http://www.microsoft.com/downloads/details.aspx?FamilyId=06111A3A-
A651-4745-88EF-3D48091A390B&displaylang=en

Mobile 6.1.4 Emulator Images

http://www.microsoft.com/downloads/details.aspx?FamilyId=1A7A6B52-
F89E-4354-84CE-5D19C204498A&displaylang=en

.NET Compact Framework Applications and Libraries on the Web

http://www.microsoft.com/downloads/details.aspx?FamilyId=1A7A6B52-
F89E-4354-84CE-5D19C204498A&displaylang=en

© 2008 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should
not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

